Item P-629 Thermoplastic Coal Tar Emulsion Surface Treatments

DESCRIPTION

This type of surface treatment is approved for use on general aviation airports
serving small airplanes 12,500 lbs (5670 kg) or less. The Engineer, with FAA
approval, may specify this item for airports serving airplanes 60,000 lbs (27216 kg)
or less.

With growing environmental/safety regulations, more states and local authorities
are prohibiting the use of coal tar products. The Engineer must verify the selected
materials comply with local authority requirements.

629-1.1. This item shall consist of an application of a thermoplastic resin coal tar emulsion [Micro-
Surface,][Sand Slurry Seal,][Spray Seal Coat,] applied to an existing,
previously prepared asphalt surface, including airport pavements serving small airplanes [12,500
lbs (5670 kg) or less], roads, and other general applications. Thermoplastic resin coal tar
emulsion products provide a fuel-resistant surface where pavements are subjected to fuel spills.
Thermoplastic resin coal tar emulsion products assist in pavement preservation through reducing the rate
of pavement oxidation. The application of the surface treatment shall be in accordance with these
specifications and shall conform to the dimensions shown on the plans or as directed by the Engineer.

MATERIALS

629-2.1 Thermoplastic coal tar emulsion. The emulsion material shall be a thermoplastic coal tar
emulsion made up of plastic resin and emulsified coal tar pitch. The thermoplastic coal tar emulsion shall
be manufactured as a complete product and tested at the manufacturing plant for material certification.
The water content of the emulsion shall not exceed 48% ±1% when tested in accordance with ASTM
D244, paragraph 3.

A dried film shall contain a minimum of 89% of a combination of plastic resin and coal tar with the
remaining percentage being inorganic filler. The dried emulsion shall have a softening point greater than
212°F (100°C) when tested in accordance with ASTM D36. A film of the dried emulsion material, 8 mils
thick, shall stretch to five (5) times its original length at 70°F (21°C) without breaking, and recover 35%
of this length in one minute.

629-2.2 Material certification. The Contractor shall furnish the manufacturer’s certification that each
consignment of thermoplastic coal tar emulsion shipped to the project meets the requirements indicated in
629-2.1 and elsewhere in this specification. The Certification shall include actual results of each test and
date of when test was performed. The Contractor shall submit a certification that the material proposed
has been in field use for a minimum of two (2) years.

629-2.3 Fuel resistance testing. The cured thermoplastic coal tar emulsion sample must pass the fuel-
resistance test outlined in Appendix A.
629-2.4 Water. The water used in mixing shall be potable and free from harmful soluble salts. The temperature of the water added during mixing shall be at least 50°F (10°C). The pH of the water added during mixing shall conform to the requirements of the thermoplastic coal tar emulsion manufacturer.

629-2.5 Handling and storage. The mixture shall be continuously agitated from the time it had been mixed until its application on the pavement surface. The distributor or applicator, pumps and all tools shall be maintained in satisfactory working condition. Spray bar nozzles, pumps, or other equipment can be cleaned mechanically or with clean water.

629-2.6 Health, safety, and environment. The Contractor must provide a complete Material Safety Data Sheet (MSDS) in accordance with U.S. Department of Labor, Occupational Safety and Health Administration (OSHA), Regulations (Standards – 29 CFR), 1910.1200 which establishes the requirement and minimum information for the MSDS for hazardous materials. The MSDS, Section II, shall include the Chemical Abstracts Service (CAS) registry numbers for all applicable hazardous ingredients in the coal tar emulsion product. The Contractor must provide the manufacturer’s certification that the product complies with the Code of Federal Regulation (CFR) Title 40 – Protection of Environment. The manufacturer’s certification shall address compliance for Air Programs, Part 59, National Volatile Organic Compound Emission Standards for Consumer and Commercial Products (for the airport location) and Water Programs, Part 116, Designation of Hazardous Substances.

COMPOSITION AND APPLICATION

The Engineer shall select one of the following options for paragraphs 629-3.0 to 629-3.3 based on whether the project is for (1) Thermoplastic Coal Tar Emulsion Micro-Surface Type A, (2) Thermoplastic Coal Tar Emulsion Slurry Seal, or (3) Spray Seal Coat with or without Sand Aggregate.

FOR THERMOPLASTIC COAL TAR EMULSION MICRO-SURFACE, INSERT THE FOLLOWING PARAGRAPHS FOR PARAGRAPH 629-3.0 TO 629-3.3:

629–3.0 Thermoplastic coal tar emulsion micro-surface.

Type A Aggregate Thermoplastic Coal Tar Emulsion Micro-Surface generally can be used for:

- Existing pavements that are moderately rough and raveled and require a substantially improved surface profile or wearing surface.
- Pavements that may require improvement of skid-resistance.
- Areas that require wear protection, oxidation protection and chemical/fuel resistance.
Type B Aggregate Thermoplastic Coal Tar Emulsion Micro-Surface generally can be used for:
- Existing pavements that are raveled or smooth and require an improved surface profile or wearing surface.
- Pavements that may require improvement of skid-resistance.
- Areas that require wear protection, oxidation protection and chemical/fuel resistance.

629-3.1 Quantities of materials per square yard. Based on the data in this specification, the Contractor shall submit the proportions of water, thermoplastic coal tar emulsion, and aggregate proposed for use to the Engineer for approval prior to the start of operations. A copy of the mix design and test data required by this specification shall be submitted to the Engineer for approval along with the above information. No thermoplastic coal tar emulsion micro-surface shall be produced for payment until a job mix formula has been approved in writing by the Engineer.

The approximate amounts of materials per square yard (square meter) for the micro-surface treatment shall be as provided in the Application Rate table.

<table>
<thead>
<tr>
<th>Aggregate Type</th>
<th>Composition 1 lbs/gal (kg/l)</th>
<th>Application Rate 2 lb/yd2 (kg/m2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>21-23 (2.52-2.75)</td>
<td>8 (4.34)</td>
</tr>
<tr>
<td>B</td>
<td>19-21 (2.28-2.52)</td>
<td>6.5 (3.53)</td>
</tr>
</tbody>
</table>

i. Aggregate (lbs) shall be mixed homogeneously with the thermoplastic coal tar emulsion (gals).

ii. Minimum application rate of uncured thermoplastic coal tar emulsion micro-surface.

629-3.2 Aggregate. The aggregate shall consist of sound, durable crushed igneous type stone (crushed basalt, granite, trap rock, etc.), be free from films of matter that would prevent thorough coating and bonding with the bituminous material and free from coatings of clay, organic matter, and other deleterious materials. The percentage of wear shall not be greater than 35% when tested in accordance with ASTM C131. The aggregate shall meet the gradation in the table below for Type A and for Type B when tested in accordance with ASTM C136.

The Contractor shall provide a certification showing particle size analysis and properties of the material delivered for use on the project.
Aggregate Material Gradation Requirements

<table>
<thead>
<tr>
<th>Sieve Designation (square openings)</th>
<th>Percentage by Weight Passing Sieves</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Type A</td>
</tr>
<tr>
<td>No. 4 (4.75mm)</td>
<td>100</td>
</tr>
<tr>
<td>No. 8 (2.38 mm)</td>
<td>75-95</td>
</tr>
<tr>
<td>No. 16 (1.19 mm)</td>
<td>50-75</td>
</tr>
<tr>
<td>No. 30 (0.60 mm)</td>
<td>30-65</td>
</tr>
<tr>
<td>No. 50 (0.30 mm)</td>
<td>20-50</td>
</tr>
<tr>
<td>No. 100 (0.15 mm)</td>
<td>15-25</td>
</tr>
<tr>
<td>No. 200 (0.07 mm)</td>
<td>5-20</td>
</tr>
</tbody>
</table>

629-3.3 Application

a. Application of tack coat. After preparation of the pavement and acceptance by the Engineer, the tack coat shall be applied to the pavement surface only where micro-surface will be applied. Apply a tack coat of thermoplastic coal tar emulsion diluted with 50% water at the rate of 0.10 gallons of mix per square yard (0.45 l/m²).

b. Application of micro-surface. The surface shall be pre-wet by fogging ahead of the spreader box. Water used in pre-wetting the surface shall be applied at such a rate that the entire surface is damp with no apparent flowing water in front of the spreader box. If temperatures are in the colder acceptable range the rate of fogging may be decreased. The mixture shall be of the desired consistency when deposited on the surface, and no additional elements shall be added. A sufficient amount of mixture shall be carried in the spreader box at all times so that even distribution is obtained. No clumped or unmixed aggregate shall be permitted. No segregation of the emulsion and aggregate fines from the coarse aggregate will be permitted.

Upon completion of the work, the thermoplastic coal tar emulsion micro-surface shall have no bare spots or cracks through which liquids or foreign matter could penetrate to the underlying pavement. The finished surface shall present a uniform texture.

In areas where the spreader box cannot be used, the thermoplastic coal tar emulsion micro-surface shall be applied by a means of a hand squeegee.

FOR THERMOPLASTIC COAL TAR EMULSION SAND SLURRY SEAL, INSERT THE FOLLOWING PARAGRAPHS FOR PARAGRAPH 629-3.0 TO 629-3.3:

629–3.0 Thermoplastic coal tar emulsion sand slurry seal.

629-3.1 Quantities of materials per square yard. Based on the data in this specification, the Contractor shall submit the proportions of water, thermoplastic coal tar emulsion, and aggregate proposed for use to the Engineer for approval prior to the start of operations. A copy of the mix design and test data required by this specification shall be submitted to the Engineer for approval along with the above information.
No thermoplastic coal tar emulsion sand slurry seal shall be produced for payment until a job mix formula has been approved in writing by the Engineer.

Application Rate

<table>
<thead>
<tr>
<th>Composition ¹ lbs/gal (kg/l)</th>
<th>Application Rate ² lb/yd² (kg/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-17 ¹ (1.80-2.04)</td>
<td>4 (2.17)</td>
</tr>
</tbody>
</table>

i. Aggregate (lbs) shall be mixed homogeneously with the thermoplastic coal tar emulsion (gals).

ii. Minimum application rate of uncured thermoplastic coal tar emulsion sand slurry seal.

629-3.2 Aggregate. The aggregate shall consist of sound, durable crushed igneous type stone (crushed basalt, granite, trap rock, etc.), clean washed masonry sand, or clean washed silica sand, be free from films of matter that would prevent thorough coating and bonding with the bituminous material and free from coatings of clay, organic matter, and other deleterious materials. Aggregate shall have a Mohs hardness of 6 to 8. The aggregate shall meet the gradation in the table below when tested in accordance with ASTM C136.

The Contractor shall provide a certification showing particle size analysis and properties of the material delivered for use on the project. The Contractor’s certification may be subject to verification by testing the material delivered for use on the project.

Aggregate Material Gradation Requirements

<table>
<thead>
<tr>
<th>Sieve Designation (square openings)</th>
<th>Percentage by Weight Passing Sieves</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 4 (4.75mm)</td>
<td>100</td>
</tr>
<tr>
<td>No. 8 (2.38 mm)</td>
<td>90-100</td>
</tr>
<tr>
<td>No. 16 (1.19 mm)</td>
<td>75-100</td>
</tr>
<tr>
<td>No. 30 (0.60 mm)</td>
<td>55-85</td>
</tr>
<tr>
<td>No. 50 (0.30 mm)</td>
<td>30-55</td>
</tr>
<tr>
<td>No. 100 (0.15 mm)</td>
<td>0-20</td>
</tr>
<tr>
<td>No. 200 (0.07 mm)</td>
<td>0-5</td>
</tr>
</tbody>
</table>

629-3.3 Application.

a. **Application of tack coat.** After preparation of the pavement and acceptance by the Engineer, the tack coat shall be applied to the pavement surface only where thermoplastic coal tar emulsion sand slurry seal will be applied. Apply a tack coat of thermoplastic coal tar emulsion diluted with 50% water at the rate of 0.10 gallons of mix per square yard (0.45 l/m²).

b. **Application of sand slurry seal.** The Surface shall be pre-wet by fogging ahead of the spreader box. Water used in pre-wetting the surface shall be applied at such a rate that the entire surface is damp with no apparent flowing water in front of the spreader box. The mixture shall be of the desired consistency when deposited on the surface, and no additional elements shall be added. A sufficient amount of mixture shall be carried in the spreader box at all times so that even distribution is obtained. No clumped or unmixed aggregate shall be permitted. No segregation of the thermoplastic coal tar emulsion and aggregate fines from the coarse aggregate will be permitted.
 Upon completion of the work, the thermoplastic coal tar emulsion sand slurry seal shall have no bare spots or cracks through which liquids or foreign matter could penetrate to the underlying pavement. The finished surface shall present a uniform texture.

In areas where the spreader box cannot be used, the thermoplastic coal tar emulsion sand slurry seal shall be applied by a means of a hand squeegee.

FOR THERMOPLASTIC COAL TAR EMULSION SPRAY SEAL COAT [WITH]
[WITHOUT] SAND AGGREGATE, INSERT THE FOLLOWING FOR PARAGRAPH 629-3.0 TO 629-3.3:

629–3.0 Thermoplastic coal tar emulsion spray seal coat [with] [without] sand aggregate.

**

Thermoplastic coal tar emulsion spray seal coat treatments may be used for taxiways and runways with the application of a suitable aggregate to maintain adequate surface friction; airfield secondary and tertiary pavements including shoulders, overruns, roads, parking areas, and other general applications with or without aggregate applied. The thermoplastic coal tar emulsion spray seal coat may be applied to new asphalt pavement and pavements in fair or better condition as defined in ASTM D5340 or advisory circular (AC) 150/5320-17, Airfield Pavement Surface Evaluation and Rating (PASER) Manuals. A thermoplastic coal tar emulsion spray seal coat without aggregate, more commonly called a “fog seal”, can be considered for use on pavements with low to moderate weathered surfaces as defined by ASTM D5340.

**

629-3.1 Quantities of materials per square yard. Based on the data in this specification, the Contractor shall submit the proportions of water, thermoplastic coal tar emulsion, and aggregate proposed for use to the Engineer for approval prior to the start of operations. A copy of the test data required by this specification shall be submitted to the Engineer for approval along with the above information. No thermoplastic coal tar emulsion spray seal coat shall be produced for payment until approved in writing by the Engineer.

Application Rate without Aggregate

<table>
<thead>
<tr>
<th>Composition</th>
<th>Application Rate gal/yd² (L/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>75% thermoplastic coal tar emulsion and 25% water (±5%)</td>
<td>0.15-0.25 (0.081-0.136)</td>
</tr>
</tbody>
</table>
Application Rate with Aggregate

<table>
<thead>
<tr>
<th>Application Coat(s)</th>
<th>Composition (^i) lbs/gal (kg/L)</th>
<th>Application Rate (^{ii}) Per Coat gal/yd² (L/m²)</th>
<th>Total Application Rate (^{ii}) gal/yd² (L/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6 (0.72)</td>
<td>0.20-0.30 (0.76-1.14)”</td>
<td>0.20-0.30 (0.76-1.14)”</td>
</tr>
<tr>
<td>2</td>
<td>3 (0.36)</td>
<td>0.10-0.15 (0.38-0.57)</td>
<td>0.20-0.30 (0.76-1.14)”</td>
</tr>
</tbody>
</table>

i. Aggregate (lbs) shall be mixed with the undiluted thermoplastic coal tar emulsion (gals).

ii. Minimum application rate of uncured thermoplastic coal tar emulsion spray seal coat.

629-3.2 Aggregate. The aggregate material shall be a dry, clean, dust and dirt free, sound, durable, angular shaped manufactured specialty sand, such as that used as an abrasive, with a Mohs hardness of 6 to 8. The Contractor shall submit manufacturer’s technical data and a manufacturer’s certification indicating that the specialty sand meets the requirements of the specification to the Engineer prior to bid. The sand must be approved for use by the Engineer and shall meet the following gradation limits:

Aggregate Material Gradation Requirements

<table>
<thead>
<tr>
<th>Sieve Designation (square openings)</th>
<th>Percentage by Weight Retained Sieves</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 20 (0.84 mm)</td>
<td>0-2</td>
</tr>
<tr>
<td>No. 30 (0.60 mm)</td>
<td>0-12</td>
</tr>
<tr>
<td>No. 40 (0.42 mm)</td>
<td>2-60</td>
</tr>
<tr>
<td>No. 50 (0.30 mm)</td>
<td>5-60</td>
</tr>
<tr>
<td>No. 70 (0.21 mm)</td>
<td>5-60</td>
</tr>
<tr>
<td>No. 100 (0.15 mm)</td>
<td>5-30</td>
</tr>
<tr>
<td>No. 140 (0.106 mm)</td>
<td>0-10</td>
</tr>
<tr>
<td>No. 200 (0.07 mm)</td>
<td>0-2</td>
</tr>
<tr>
<td>Finer than No. 200</td>
<td>0-0.3</td>
</tr>
</tbody>
</table>

The Contractor shall provide a certification showing particle size analysis and properties of the material delivered for use on the project. The Contractor’s certification may be subject to verification by testing the material delivered for use on the project.

**

The gradations in the table represent the limits in determining aggregate suitability for use in the thermoplastic coal tar emulsion spray seal. The sand gradation used, within the limits designated in the table, shall provide sufficient friction levels to meet or exceed the Maintenance Planning Friction Level in Table 3-2, “Friction Level Classification for Runway Pavement Surfaces” of AC 150/5320-12, Measurement, Construction, and Maintenance of Skid Resistant Airport Pavement Surfaces.

**

629-3.3 Application.
a. Pavement surfaces which have excessive runoff of seal coat due to excessive amount of material being applied or excessive surface grade shall be treated in two or more applications to the specified application rate at no additional cost to the Owner. Each additional application shall be performed after the prior application of material has penetrated into the pavement.

If low spots and depressions greater than 1/2 inch (12 mm) in depth in the pavement surface cause ponding or puddling of the applied materials, the pavement surface shall be broomed with a broom drag. Brooming shall continue until the pavement surface is free of any pools of excess material. Ponding and/or puddling shall not cause excessive pavement softening and/or additional distress. The Engineer shall inspect and approve areas after brooming.

During all applications, the surfaces of adjacent structures shall be protected to prevent their being spattered or marred. Thermoplastic coal tar emulsion materials shall not be discharged into borrow pits or gutters.

629-3.4 Friction characteristics. For projects where thermoplastic coal tar emulsion spray seal coat is applied on runway and taxiway surfaces, the Contractor shall submit to the Engineer friction tests, from previous airport projects which used the thermoplastic coal tar emulsion spray seal coat in a similar environment, in accordance with AC 150/5320-12, at 40 or 60 mph (65 or 95 km/h) wet, showing, as a minimum; friction value of pavement surface prior to thermoplastic coal tar emulsion spray seal coat application; two values, tested between 24 and 96 hours after application, with a minimum of 24 hours between tests; and one value tested at no less than 180 days or greater than 360 days after the thermoplastic coal tar emulsion spray seal coat application. The results of the two tests between 24 and 96 hours shall indicate friction is increasing at a rate to obtain similar friction value of the pavement surface prior to application, and the long term test shall indicate no apparent adverse effect with time relative to friction values and existing pavement surface. The Contractor shall submit to the Engineer a list of airports which meet the above requirements, as well as technical details on application rates, aggregate rates, and point of contact at these airports to confirm use and success of thermoplastic coal tar emulsion spray seal coat with aggregate. Friction tests shall be submitted from no less than one of the airports on the list and each set of tests described above, must be from one project.

The thermoplastic coal tar emulsion spray seal coat submittal without the required friction performance will not be approved. Friction tests performed on this project cannot be used as a substitute of this requirement.

CONSTRUCTION METHODS

629-4.1 Worker safety. The thermoplastic coal tar emulsion surface treatment product shall be handled with caution. The Contractor shall obtain a MSDS for both the thermoplastic coal tar emulsion product and sand and require workmen to follow the manufacturer’s recommended safety precautions.

629-4.2 Weather limitations. The material shall not be applied when the humidity or impending weather conditions will not allow proper drying or when the atmospheric or pavement temperature is below 50°F (10°C), unless otherwise directed by the Engineer.

During application of thermoplastic coal tar emulsion surface treatment, account for wind drift. Cover existing buildings, structures, runway edge lights, taxiway edge lights, informational signs, retro-reflective marking and in-pavement duct markers as necessary to protect against overspray before applying the emulsion. Should thermoplastic coal tar emulsion surface treatment get on any light or marker fixture, promptly clean the fixture. If cleaning is not satisfactory to the Engineer, the Contractor shall replace any light, sign or marker with equivalent equipment at no cost to the Owner.
629-4.3 Application equipment

a. Mobile mixing machine [for micro-surface and sand slurry seal versions only]. The mobile mixing machine shall be a truck-mounted mobile mixing plant with a towed-type spreader box. It shall have a water tank and water pump capable of delivering a constant volume of water.

The mobile mixing machine shall have an agitated storage tank for the thermoplastic coal tar emulsion and a non-shearing peristaltic pump with variable rate of flow for the delivery of this material. The mobile mixing machine shall have a hopper for holding aggregate, supplying this material to the mixing chamber by a conveyor belt. The rate of aggregate delivery shall be volumetrically controlled by an adjustable gate opening. The speed of the conveyor shall be mechanically dependent upon the speed of the peristaltic pump.

The mobile mixing machine shall be a continuous-flow mixing unit capable of delivering predetermined quantities of thermoplastic coal tar emulsion, aggregate, and if necessary water, to the mixing chamber and discharging the thoroughly mixed material on a continuous basis. The mobile mixing machine shall deliver the materials to the mixing chamber in a constant proportion in a manner not dependent on power plant or vehicle speed. The machine shall be equipped with a water spray bar capable of fogging the pavement surface to aid in the application process.

Attached to the mixing machine shall be a mechanical-type squeegee distributor, equipped with flexible material in contact with the surface to prevent loss of material from the distributor. It shall be maintained to prevent loss of micro-surfacing on varying grades and adjusted to assure uniform spread. The spreader box may have an adjustable width.

b. Batch mixing machine. The batch-mixing machine shall be either a truck-mounted 500 to 3,000 gallon (1893 to 11356 liter) tank or a self-propelled batch mixing machine 300 to 1000 gallons (1136 to 3785 liters) containing suitably driven mixing blades to combine predetermined quantities of thermoplastic emulsion, aggregate if specified and if necessary, water into a homogeneous mixture. It shall be equipped with a water tank and diaphragm style pump capable of delivering a constant volume of material to a spray wand or spray bar. The device shall have a bottom ball valve of 3 inches (75 mm) diameter capable of delivering material to a squeegee spreader or a drag box.

c. Auxiliary equipment. Other tools or equipment such as power brooms, power blowers, air compressors, hand brooms, hand squeegees, etc., shall be provided as required.

629-4.4 Test areas and test sections. A qualified manufacturer’s representative shall be present in the field to assist the Contractor in applying test areas and/or test sections to determine the optimum application rate. A test area and/or section shall be applied for each differing hot mix asphalt (HMA) pavement surface identified in the project. The test area(s) and/or test section(s) shall be used to determine the material application rate(s) prior to full production. The same equipment and method of operation shall be utilized on the test area(s) and/or test section(s) as will be utilized on the remainder of the work.

a. For Taxiway, taxilane and apron surfaces. Prior to full application, the Contractor shall place test areas at varying application rates as specified by the manufacturer’s representative and Engineer to determine application rate(s). The test areas will be located on representative section(s) of the pavement to receive the Thermoplastic coal tar emulsion spray seal coat designated by the Engineer.

b. For spray seal coat on runway and taxiway surfaces. Prior to full application, the Contractor shall place a series of test sections a minimum of 300 feet (90 m) long by 12 feet (3.6 m) wide, or width of anticipated application, whichever is greater, at varying application rates as stipulated by the manufacturer’s representative and Engineer to determine application rate(s). The area to be tested will be located on a representative section of the pavement to receive the Thermoplastic coal tar emulsion spray...
seal coat designated by the Engineer. Before beginning the test section(s), the skid resistance of the existing pavement shall be determined for each test section with a continuous friction measuring equipment (CFME). The skid resistance test after application shall be at approximately the same location as the test done on the existing pavement. The Contractor may begin testing the skid resistance of runway and taxiway test sections after application of the Thermoplastic coal tar emulsion spray seal has fully cured. Aircraft shall not be permitted on the runway or taxiway test sections for a minimum of 24 hours and until such time as the Contractor validates that its surface friction meets AC 150/5320-12. The results of the friction evaluation meet or exceed the Maintenance Planning levels provided in Table 3-2, “Friction Level Classification for Runway Pavement Surfaces,” in AC 150/5320-12, Measurement, Construction, and Maintenance of Skid-resistant Airport Pavement Surfaces, when tested at speeds of 40 and 60 mph (65 and 95 km/h) wet with approved CFME.

If the test section should prove to be unsatisfactory, necessary adjustments to the application rate, placement operations, and equipment shall be made. Additional test sections shall be placed and additional skid resistance tests performed and evaluated. Full production shall not begin without the Engineer’s approval of an appropriate application rate(s). Acceptable test sections shall be paid for in accordance with paragraph 629-8.1.

The test section affords the Contractor and the Engineer an opportunity to determine the quality of the mixture in place as well as the performance of the equipment.

The application rate depends on the surface texture.

If operational conditions preclude placement of a test section on the pavement to be treated, it may be applied on a pavement with similar surface texture.

The only test required on the composite mix placed in the field is the viscosity test. The fuel resistance test may be specified, however, this test takes 96 hours to run.

For projects calling for application of the thermoplastic coal tar emulsion surface treatment on runway and taxiway, the Engineer shall document skid resistance in accordance with AC 150/5320-12, Measurement, Construction, and Maintenance of Skid-Resistant Airport Pavement Surfaces, prior to full application.

629-4.5 Preparation of asphalt pavement surfaces. Clean pavement surface immediately prior to placing the seal coat by sweeping, flushing well with water leaving no standing water, or a combination of both, so that it is free of dust, dirt, grease, vegetation, oil or any type of objectionable surface film. Remove oil or grease that has not penetrated the asphalt pavement by scraping or by scrubbing with a detergent, then wash thoroughly with clean water. After cleaning, treat these areas with the oil spot primer. Any additional surface preparation, such as crack repair, shall be in accordance with paragraph 101-3.6.

629-4.6 Application. Application shall be in accordance with paragraph 629-3.3.

629-4.7 Curing. The mixture shall be permitted to dry for a minimum of 24 hours after the application, before opening to traffic or painting, and shall be sufficiently cured to drive over without damage to the installation. Any damage to the uncured mixture will be the responsibility of the Contractor to repair.

QUALITY CONTROL

629-5.1 Manufacturer’s representation. The manufacturer’s representative shall have knowledge of the material, procedures, and equipment described in the specification and shall be responsible for
determining the application rates and shall oversee the preparation and application of the thermoplastic coal tar emulsion surface treatment. Documentation of the manufacturer representative’s experience and knowledge for applying the thermoplastic coal tar emulsion surface treatment shall be furnished to the Engineer a minimum of 10 work days prior to placement of the test sections. The cost of the manufacturer’s representative shall be included in the bid price.

629-5.2 Contractor qualifications. The Contractor shall provide the Engineer contractor qualifications for applicators, personnel and equipment. The Contractor shall also provide, from the thermoplastic coal tar emulsion Manufacturer, documentation that the Contractor is certified to apply the thermoplastic coal tar emulsion surface treatment. Contractor shall provide documentation for at least three (3) applications similar to this project completed in the past two (2) years.

MATERIAL ACCEPTANCE

629-6.1 Friction tests. Friction Test in accordance with AC 150/5320-12, Measurement, Construction, and Maintenance of Skid-Resistant Airport Pavement Surfaces, shall be accomplished on all runway and taxiways that have received a seal coat. The Contractor shall coordinate testing with the Engineer. Each test includes performing friction tests at 40 mph and 60 mph (65 and 95 km/h) both wet, 15 feet (4.5 m) to each side of runway centerline. Friction test shall be run within 30 days prior to application of the seal coat to runway and/or high-speed taxiways and after application of the seal coat. The Engineer shall be present for testing. The Contractor shall provide a written report of friction test results.

METHOD OF MEASUREMENT

629-7.1 Measurement. The Thermoplastic Coal Tar Emulsion [Micro-Surface Type A] [Micro-Surface Type B] [Sand Slurry Seal] [Spray Seal Coat with Sand Aggregate] [Spray Seal Coat without Sand Aggregate] shall be measured by the actual square yardage of the area indicated on the contract drawings or designated by the Engineer.

BASIS OF PAYMENT

629-8.1 Payment. Payment shall be made at the contract unit price per square yard (square meter) for the Thermoplastic Coal Tar Emulsion [Micro-Surface Type A] [Micro-Surface Type B] [Sand Slurry Seal] [Spray Seal Coat with Sand Aggregate] [Spray Seal Coat without Sand Aggregate]. This price shall fully compensate the Contractor for furnishing all materials and for all labor, equipment tools and incidentals necessary to complete the thermoplastic coal tar emulsion product installation, including mix design and data sheets stipulated in these specifications.

Payments will be made under:

- Item P-629-8.1 Thermoplastic coal tar emulsion [Micro-Surface Type A] [Micro-Surface Type B] [Sand Slurry Seal] [Spray Seal Coat with Sand Aggregate] [Spray Seal Coat without Sand Aggregate]—per square yard
- Item P-629-8.2 Runway and High Speed Exit Taxiway Friction Testing—per lump sum
TESTING REQUIREMENTS

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in this text by basic designation only.

ASTM C136: Standard Test Method for Sieve or Screen Analysis of Fine and Coarse Aggregates

ASTM D3699: Standard Specification for Kerosene

ASTM D36: Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus)

ASTM D244: Standard Test Methods and Practices for Emulsified Asphalts

ASTM D5340: Standard Test Method for Airport Pavement Condition Index Surveys

AC 150/5320-12: Measurement, Construction, and Maintenance of Skid-Resistant Airport Pavement Surfaces

AC 150/5320-17: Airfield Pavement Surface Evaluation and Rating (PASER) Manuals
Appendix A

FUEL RESISTANCE TEST
TEST METHODS CRITERION

1. **Scope**
 This method determines the resistance of the thermoplastic coal tar emulsion surface treatment to kerosene.

2. **Apparatus**
 2.1 Two 6” × 6” (150 mm × 150 mm) square 16 gauge sheet metal masks with a 4” × 4” (100 mm × 100 mm) square center removed.
 2.2 6” × 6” (150 mm × 150 mm) unglazed white ceramic tile with an absorption rate of 10-18% (determined in accordance with ASTM C67).
 2.3 Brass ring, 2” (50 mm) diameter and 2” (50 mm) high.
 2.4 Kerosene meeting requirements of ASTM D3699.
 2.5 Silicone rubber sealant.

3. **Procedure**
 3.1 Immerse the ceramic tile in distilled water for a minimum of ten minutes.
 3.2 Remove excess water from the tile to produce a damp surface before applying the thermoplastic coal tar emulsion surface treatment.
 3.3 Using the mask described in 2.1 apply thermoplastic coal tar emulsion surface treatment as specified to the tile. Spread even with the top of the mask using a spatula or other straightedge.
 3.4 Allow the sample to cure for 96 hours at 77 ±2°F. and 50 ±10% relative humidity.
 3.5 After curing, affix the brass ring to the thermoplastic coal tar emulsion surface treatment on the tile with silicone rubber sealant.
 3.6 Fill the brass ring with kerosene.
 3.7 After 24 hours, remove the kerosene from the brass ring, blot dry and immediately examine the film for softness and loss of adhesion. Immediately after the film is examined, break the tile in half, exposing that part of the tile whose film was subjected to the kerosene.
 3.8 Evaluate for penetration of kerosene through the thermoplastic coal tar emulsion surface treatment and loss of adhesion.

4. **Report**
 4.1 Report the results as pass or fail. Visible evidence of leakage or discoloration shall constitute failure of the fuel resistance test.

5. **Criterion:** A “pass” rating in the fuel resistance test is required prior to full production.

END OF ITEM P-629